\(\int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx\) [576]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 127 \[ \int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {5 a x}{16}-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos (c+d x)}{d}+\frac {a \cos ^3(c+d x)}{3 d}+\frac {a \cos ^5(c+d x)}{5 d}+\frac {5 a \cos (c+d x) \sin (c+d x)}{16 d}+\frac {5 a \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a \cos ^5(c+d x) \sin (c+d x)}{6 d} \]

[Out]

5/16*a*x-a*arctanh(cos(d*x+c))/d+a*cos(d*x+c)/d+1/3*a*cos(d*x+c)^3/d+1/5*a*cos(d*x+c)^5/d+5/16*a*cos(d*x+c)*si
n(d*x+c)/d+5/24*a*cos(d*x+c)^3*sin(d*x+c)/d+1/6*a*cos(d*x+c)^5*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {2917, 2672, 308, 212, 2715, 8} \[ \int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos ^5(c+d x)}{5 d}+\frac {a \cos ^3(c+d x)}{3 d}+\frac {a \cos (c+d x)}{d}+\frac {a \sin (c+d x) \cos ^5(c+d x)}{6 d}+\frac {5 a \sin (c+d x) \cos ^3(c+d x)}{24 d}+\frac {5 a \sin (c+d x) \cos (c+d x)}{16 d}+\frac {5 a x}{16} \]

[In]

Int[Cos[c + d*x]^5*Cot[c + d*x]*(a + a*Sin[c + d*x]),x]

[Out]

(5*a*x)/16 - (a*ArcTanh[Cos[c + d*x]])/d + (a*Cos[c + d*x])/d + (a*Cos[c + d*x]^3)/(3*d) + (a*Cos[c + d*x]^5)/
(5*d) + (5*a*Cos[c + d*x]*Sin[c + d*x])/(16*d) + (5*a*Cos[c + d*x]^3*Sin[c + d*x])/(24*d) + (a*Cos[c + d*x]^5*
Sin[c + d*x])/(6*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 308

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 2672

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2917

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Dist[a, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[(g*Cos[e + f*x
])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]

Rubi steps \begin{align*} \text {integral}& = a \int \cos ^6(c+d x) \, dx+a \int \cos ^5(c+d x) \cot (c+d x) \, dx \\ & = \frac {a \cos ^5(c+d x) \sin (c+d x)}{6 d}+\frac {1}{6} (5 a) \int \cos ^4(c+d x) \, dx-\frac {a \text {Subst}\left (\int \frac {x^6}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {5 a \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a \cos ^5(c+d x) \sin (c+d x)}{6 d}+\frac {1}{8} (5 a) \int \cos ^2(c+d x) \, dx-\frac {a \text {Subst}\left (\int \left (-1-x^2-x^4+\frac {1}{1-x^2}\right ) \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {a \cos (c+d x)}{d}+\frac {a \cos ^3(c+d x)}{3 d}+\frac {a \cos ^5(c+d x)}{5 d}+\frac {5 a \cos (c+d x) \sin (c+d x)}{16 d}+\frac {5 a \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a \cos ^5(c+d x) \sin (c+d x)}{6 d}+\frac {1}{16} (5 a) \int 1 \, dx-\frac {a \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {5 a x}{16}-\frac {a \text {arctanh}(\cos (c+d x))}{d}+\frac {a \cos (c+d x)}{d}+\frac {a \cos ^3(c+d x)}{3 d}+\frac {a \cos ^5(c+d x)}{5 d}+\frac {5 a \cos (c+d x) \sin (c+d x)}{16 d}+\frac {5 a \cos ^3(c+d x) \sin (c+d x)}{24 d}+\frac {a \cos ^5(c+d x) \sin (c+d x)}{6 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.21 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.79 \[ \int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {a \left (300 c+300 d x+1320 \cos (c+d x)+140 \cos (3 (c+d x))+12 \cos (5 (c+d x))-960 \log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+960 \log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )+225 \sin (2 (c+d x))+45 \sin (4 (c+d x))+5 \sin (6 (c+d x))\right )}{960 d} \]

[In]

Integrate[Cos[c + d*x]^5*Cot[c + d*x]*(a + a*Sin[c + d*x]),x]

[Out]

(a*(300*c + 300*d*x + 1320*Cos[c + d*x] + 140*Cos[3*(c + d*x)] + 12*Cos[5*(c + d*x)] - 960*Log[Cos[(c + d*x)/2
]] + 960*Log[Sin[(c + d*x)/2]] + 225*Sin[2*(c + d*x)] + 45*Sin[4*(c + d*x)] + 5*Sin[6*(c + d*x)]))/(960*d)

Maple [A] (verified)

Time = 0.29 (sec) , antiderivative size = 86, normalized size of antiderivative = 0.68

method result size
parallelrisch \(\frac {\left (60 d x +\sin \left (6 d x +6 c \right )+192 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+264 \cos \left (d x +c \right )+28 \cos \left (3 d x +3 c \right )+\frac {12 \cos \left (5 d x +5 c \right )}{5}+45 \sin \left (2 d x +2 c \right )+9 \sin \left (4 d x +4 c \right )+\frac {1472}{5}\right ) a}{192 d}\) \(86\)
derivativedivides \(\frac {a \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+a \left (\frac {\left (\cos ^{5}\left (d x +c \right )\right )}{5}+\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{3}+\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(96\)
default \(\frac {a \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+a \left (\frac {\left (\cos ^{5}\left (d x +c \right )\right )}{5}+\frac {\left (\cos ^{3}\left (d x +c \right )\right )}{3}+\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(96\)
risch \(\frac {5 a x}{16}+\frac {11 a \,{\mathrm e}^{i \left (d x +c \right )}}{16 d}+\frac {11 a \,{\mathrm e}^{-i \left (d x +c \right )}}{16 d}+\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}-\frac {a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}+\frac {a \sin \left (6 d x +6 c \right )}{192 d}+\frac {a \cos \left (5 d x +5 c \right )}{80 d}+\frac {3 a \sin \left (4 d x +4 c \right )}{64 d}+\frac {7 a \cos \left (3 d x +3 c \right )}{48 d}+\frac {15 a \sin \left (2 d x +2 c \right )}{64 d}\) \(146\)
norman \(\frac {\frac {28 a \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {5 a x}{16}+\frac {46 a}{15 d}+\frac {11 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{8 d}-\frac {5 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}+\frac {15 a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}-\frac {15 a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {5 a \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d}-\frac {11 a \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8 d}+\frac {15 a x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {75 a x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {25 a x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4}+\frac {75 a x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {15 a x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{8}+\frac {5 a x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{16}+\frac {6 a \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {18 a \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {92 a \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {62 a \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{6}}+\frac {a \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(319\)

[In]

int(cos(d*x+c)^6*csc(d*x+c)*(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/192*(60*d*x+sin(6*d*x+6*c)+192*ln(tan(1/2*d*x+1/2*c))+264*cos(d*x+c)+28*cos(3*d*x+3*c)+12/5*cos(5*d*x+5*c)+4
5*sin(2*d*x+2*c)+9*sin(4*d*x+4*c)+1472/5)*a/d

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.87 \[ \int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {48 \, a \cos \left (d x + c\right )^{5} + 80 \, a \cos \left (d x + c\right )^{3} + 75 \, a d x + 240 \, a \cos \left (d x + c\right ) - 120 \, a \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 120 \, a \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) + 5 \, {\left (8 \, a \cos \left (d x + c\right )^{5} + 10 \, a \cos \left (d x + c\right )^{3} + 15 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/240*(48*a*cos(d*x + c)^5 + 80*a*cos(d*x + c)^3 + 75*a*d*x + 240*a*cos(d*x + c) - 120*a*log(1/2*cos(d*x + c)
+ 1/2) + 120*a*log(-1/2*cos(d*x + c) + 1/2) + 5*(8*a*cos(d*x + c)^5 + 10*a*cos(d*x + c)^3 + 15*a*cos(d*x + c))
*sin(d*x + c))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)*(a+a*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.83 \[ \int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {32 \, {\left (6 \, \cos \left (d x + c\right )^{5} + 10 \, \cos \left (d x + c\right )^{3} + 30 \, \cos \left (d x + c\right ) - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a - 5 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 60 \, d x - 60 \, c - 9 \, \sin \left (4 \, d x + 4 \, c\right ) - 48 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a}{960 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/960*(32*(6*cos(d*x + c)^5 + 10*cos(d*x + c)^3 + 30*cos(d*x + c) - 15*log(cos(d*x + c) + 1) + 15*log(cos(d*x
+ c) - 1))*a - 5*(4*sin(2*d*x + 2*c)^3 - 60*d*x - 60*c - 9*sin(4*d*x + 4*c) - 48*sin(2*d*x + 2*c))*a)/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.58 \[ \int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {75 \, {\left (d x + c\right )} a + 240 \, a \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - \frac {2 \, {\left (165 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{11} - 720 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{10} - 25 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 2160 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{8} + 450 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 3680 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{6} - 450 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3360 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{4} + 25 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 1488 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 165 \, a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 368 \, a\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{6}}}{240 \, d} \]

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)*(a+a*sin(d*x+c)),x, algorithm="giac")

[Out]

1/240*(75*(d*x + c)*a + 240*a*log(abs(tan(1/2*d*x + 1/2*c))) - 2*(165*a*tan(1/2*d*x + 1/2*c)^11 - 720*a*tan(1/
2*d*x + 1/2*c)^10 - 25*a*tan(1/2*d*x + 1/2*c)^9 - 2160*a*tan(1/2*d*x + 1/2*c)^8 + 450*a*tan(1/2*d*x + 1/2*c)^7
 - 3680*a*tan(1/2*d*x + 1/2*c)^6 - 450*a*tan(1/2*d*x + 1/2*c)^5 - 3360*a*tan(1/2*d*x + 1/2*c)^4 + 25*a*tan(1/2
*d*x + 1/2*c)^3 - 1488*a*tan(1/2*d*x + 1/2*c)^2 - 165*a*tan(1/2*d*x + 1/2*c) - 368*a)/(tan(1/2*d*x + 1/2*c)^2
+ 1)^6)/d

Mupad [B] (verification not implemented)

Time = 12.00 (sec) , antiderivative size = 327, normalized size of antiderivative = 2.57 \[ \int \cos ^5(c+d x) \cot (c+d x) (a+a \sin (c+d x)) \, dx=\frac {-\frac {11\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{8}+6\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+\frac {5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{24}+18\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-\frac {15\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{4}+\frac {92\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{3}+\frac {15\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{4}+28\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-\frac {5\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{24}+\frac {62\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{5}+\frac {11\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{8}+\frac {46\,a}{15}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+15\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+20\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+15\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {a\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}+\frac {5\,a\,\mathrm {atan}\left (\frac {25\,a^2}{64\,\left (\frac {5\,a^2}{4}-\frac {25\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{64}\right )}+\frac {5\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,\left (\frac {5\,a^2}{4}-\frac {25\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{64}\right )}\right )}{8\,d} \]

[In]

int((cos(c + d*x)^6*(a + a*sin(c + d*x)))/sin(c + d*x),x)

[Out]

((46*a)/15 + (11*a*tan(c/2 + (d*x)/2))/8 + (62*a*tan(c/2 + (d*x)/2)^2)/5 - (5*a*tan(c/2 + (d*x)/2)^3)/24 + 28*
a*tan(c/2 + (d*x)/2)^4 + (15*a*tan(c/2 + (d*x)/2)^5)/4 + (92*a*tan(c/2 + (d*x)/2)^6)/3 - (15*a*tan(c/2 + (d*x)
/2)^7)/4 + 18*a*tan(c/2 + (d*x)/2)^8 + (5*a*tan(c/2 + (d*x)/2)^9)/24 + 6*a*tan(c/2 + (d*x)/2)^10 - (11*a*tan(c
/2 + (d*x)/2)^11)/8)/(d*(6*tan(c/2 + (d*x)/2)^2 + 15*tan(c/2 + (d*x)/2)^4 + 20*tan(c/2 + (d*x)/2)^6 + 15*tan(c
/2 + (d*x)/2)^8 + 6*tan(c/2 + (d*x)/2)^10 + tan(c/2 + (d*x)/2)^12 + 1)) + (a*log(tan(c/2 + (d*x)/2)))/d + (5*a
*atan((25*a^2)/(64*((5*a^2)/4 - (25*a^2*tan(c/2 + (d*x)/2))/64)) + (5*a^2*tan(c/2 + (d*x)/2))/(4*((5*a^2)/4 -
(25*a^2*tan(c/2 + (d*x)/2))/64))))/(8*d)